The generator matrix 1 0 1 1 1 X+2 1 1 2X+2 1 1 3X 1 1 2X 1 1 3X+2 1 1 2 1 1 X 1 1 0 1 1 X+2 1 1 2X+2 1 1 3X 1 1 2X 1 1 3X+2 1 1 2 1 1 X X X 0 1 X X 2X+2 1 2X+2 X X 2 X X 2X 1 1 0 1 1 2X 2 1 1 1 1 1 1 1 1 1 1 X+2 3X+2 3X X 1 1 1 1 1 1 1 1 0 1 X+1 X+2 3 1 2X+2 3X+3 1 3X 2X+1 1 2X 3X+1 1 3X+2 2X+3 1 2 X+3 1 X 1 1 0 X+1 1 X+2 3 1 2X+2 3X+3 1 3X 2X+1 1 2X 3X+1 1 3X+2 2X+3 1 2 X+3 1 X 1 1 0 X+2 X 2X+2 2X+2 3X X 3X+3 1 2 X X 2X 3X+2 X X+2 X+1 1 0 3 1 1 3X 3X+1 X+3 2X 2 3X+2 X 2X+3 2X+1 1 1 1 1 1 0 2X 2X+2 2 X+2 3X+2 3X X generates a code of length 92 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 92. Homogenous weight enumerator: w(x)=1x^0+240x^92+13x^96+2x^112 The gray image is a code over GF(2) with n=736, k=8 and d=368. This code was found by Heurico 1.16 in 0.328 seconds.